

CMOS ± 5 V/+5 V, 4 Ω Dual SPST Switches

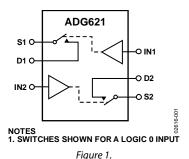
ADG621/ADG622/ADG623

FEATURES

5.5 Ω (maximum) on resistance 0.9 Ω (maximum) on resistance flatness 2.7 V to 5.5 V single supply ± 2.7 V to ± 5.5 V dual supply Rail-to-rail operation 10-lead MSOP package Typical power consumption (<0.01 μ W) TTL-/CMOS-compatible inputs

APPLICATIONS

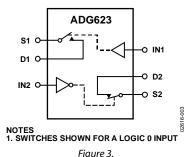
Automatic test equipment Power routing Communication systems Data acquisition systems Sample-and-hold systems Avionics Relay replacements Battery-powered systems


GENERAL DESCRIPTION

The ADG621/ADG622/ADG623 are monolithic, CMOS, single-pole, single-throw (SPST) switches. Each switch of the ADG621/ADG622/ADG623 conducts equally well in both directions when on.

The ADG621/ADG622/ADG623 contain two independent switches. The ADG621 and ADG622 differ only in that both switches are normally open and normally closed. In the ADG623, Switch 1 is normally open, and Switch 2 is normally closed. The ADG623 exhibits break-before-make switching action.

The ADG621/ADG622/ADG623 offer low on resistance of 4 Ω , which is matched to within 0.25 Ω between channels. These switches also provide low power dissipation yet give high switching speeds. The ADG621/ADG622/ADG623 are available in a 10-lead MSOP package.


FUNCTIONAL BLOCK DIAGRAMS

ADG622 S1 O O IN1 D1 O D2 IN2 O S2

NOTES 1. SWITCHES SHOWN FOR A LOGIC 0 INPUT

Figure 2.

PRODUCT HIGHLIGHTS

- 1. Low on resistance, R_{ON} (4 Ω typical).
- 2. Dual $\pm 2.7 \text{ V}$ to $\pm 5.5 \text{ V}$ or single +2.7 V to +5.5 V.
- Low power dissipation; CMOS construction ensures low power dissipation.
- 4. Tiny 10-lead MSOP package.

TABLE OF CONTENTS

Features	1
Applications	1
General Description	1
Functional Block Diagrams	1
Product Highlights	1
Revision History	2
Specifications	3
Dual Supply	3
Single Supply	4

Absolute Maximum Ratings	5
ESD Caution	5
Pin Configuration and Function Descriptions	6
Terminology	7
Typical Performance Characteristics	8
Test Circuits	10
Outline Dimensions	12
Ordering Guide	12

REVISION HISTORY

6/07—Rev. 0 to Rev. A

Change to On Resistance Flatness, R _{FLAT(ON)}	
Specification (Table 1)	3
Change to On Resistance Flatness, R _{FLAT(ON)}	
Specification (Table 2)	4
Added Table 6	6
Changes to Terminology Section	7
Changes to Figure 13	9
Updated Outline Dimensions	12
Changes to Ordering Guide	12

11/01—Revision 0: Initial Version

SPECIFICATIONS

DUAL SUPPLY¹

 V_{DD} = +5 V \pm 10%, V_{SS} = -5 V \pm 10%, GND = 0 V, unless otherwise noted.

Table 1.

Parameter	+25°C	-40°C to +85°C	Unit	Test Conditions/Comments
ANALOG SWITCH				
Analog Signal Range		V_{SS} to V_{DD}	V	$V_{DD} = +4.5 \text{ V}, V_{SS} = -4.5 \text{ V}$
On Resistance, Ron	4		Ω typ	$V_s = \pm 4.5 \text{ V}, I_s = -10 \text{ mA}, \text{ see Figure 16}$
	5.5	7	Ω max	_
On Resistance Match Between Channels, ΔR _{ON}	0.25		Ω typ	$V_S = \pm 4.5 \text{ V}, I_S = -10 \text{ mA}$
	0.35	0.4	Ω max	
On Resistance Flatness, R _{FLAT(ON)}	0.9	0.9	Ωtyp	$V_S = \pm 3.3 \text{ V, } I_S = -10 \text{ mA}$
		1.5	Ω max	
LEAKAGE CURRENTS				$V_{DD} = +5.5 \text{ V}, V_{SS} = -5.5 \text{ V}$
Source Off Leakage, I₅ (Off)	±0.01		nA typ	$V_{\rm S} = \pm 4.5 \text{V}, V_{\rm D} = \mp 4.5 \text{V}, \text{ see Figure 17}$
	±0.25	±1	nA max	
Drain Off Leakage, I _D (Off)	±0.01		nA typ	$V_{S} = \pm 4.5 \text{ V}, V_{D} = \mp 4.5 \text{ V}, \text{ see Figure 17}$
3, ,	±0.25	±1	nA max	vs ± 1.5 v, v _y 1 1.5 v, see 1.9 die 1.7
Channel On Leakage, I₀, I₅ (On)	±0.01		nA typ	$V_{S} = V_{D} = \pm 4.5 \text{ V, see Figure 18}$
charmer on Ecanage, 15, 13 (on)	±0.25	±1	nA max	v ₃ = v _b = ± 1.5 v, see rigate 10
DIGITAL INPUTS	10.23		TITTITICA	
Input High Voltage, V _{INH}		2.4	V min	
Input Low Voltage, VINL		0.8	V max	
Input Current, I _{INL} or I _{INH}	0.005	0.0	μA typ	V _{IN} = V _{INI} or V _{INH}
input current, inc or initi	0.003	±0.1	μA max	VINC OF VINIT
Digital Input Capacitance, C _{IN}	2		pF typ	
DYNAMIC CHARACTERISTICS ²			F: 5/F	
ton	75		ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$; $V_S = 3.3 V$, see Figure 19
	120	155	ns max	35012/ CE 35 PI / V3 3.5 V/3CC Ligare 15
t_{OFF}	45		ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$; $V_S = 3.3 V$, see Figure 19
COFF	70	85	ns max	11 = 300 12, CL = 33 pr, V3 = 3.3 V, 3cc rigate 13
Break-Before-Make Time Delay, t _{BBM} (ADG623 Only)	30	03	ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$; $V_{S1} = V_{S2} = 3.3 V$
break before make time belay, than (15 do25 drily)		10	ns min	See Figure 20
Charge Injection	110		pC typ	$V_S = 0 \text{ V}, R_S = 0 \Omega, C_L = 1 \text{ nF, see Figure 21}$
Off Isolation	–65		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$, see Figure 22
Channel-to-Channel Crosstalk	-90		dB typ	$R_L = 50 \Omega$, $C_L = 5 \text{ pF}$, $f = 1 \text{ MHz}$, see Figure 23
Bandwidth –3 dB	230		MHz typ	$R_L = 50 \Omega$, $C_L = 5 \text{ pF}$, $I = 1 \text{ Will 2}$, see Figure 23
C _s (Off)	20		pF typ	f = 1 MHz
	-			1 = 1 MHz f = 1 MHz
C_D (Off) C_D , C_S (On)	20 70		pF typ	f = 1 MHz
POWER REQUIREMENTS	70		pF typ	$V_{DD} = 5.5 \text{ V}, V_{SS} = -5.5 \text{ V}$
-	0.001		LIA turo	$V_{DD} = 5.5 \text{ V}, V_{SS} = -5.5 \text{ V}$ Digital inputs = 0 V or 5.5 V
I_{DD}	0.001	1.0	μA typ	Digital iliputs = 0 v of 5.5 v
L	0.001	1.0	μA max	Digital inputs = 0 V or 5 5 V
I _{ss}	0.001		μA typ	Digital inputs = 0 V or 5.5 V
		1.0	μA max	

 $^{^1}$ Temperature range is as follows: B version, –40°C to +85°C. 2 Guaranteed by design; not subject to production test.

SINGLE SUPPLY¹

 V_{DD} = 5 V \pm 10%, V_{SS} = 0 V, GND = 0 V, unless otherwise noted.

Table 2.

Parameter	+25°C	-40°C to +85°C	Unit	Test Conditions/Comments
ANALOG SWITCH				
Analog Signal Range		0 to V _{DD}	V	$V_{DD} = 4.5 \text{ V}, V_{SS} = 0 \text{ V}$
On Resistance, R _{ON}	7		Ω typ	$V_S = 0 \text{ V to } 4.5 \text{ V}, I_S = -10 \text{ mA}, \text{ see Figure } 16$
	10	12.5	Ω max	_
On Resistance Match Between Channels, ΔRon	0.5		Ω typ	$V_S = 0 \text{ V to } 4.5 \text{ V, } I_S = -10 \text{ mA}$
	0.75	1	Ω max	
On Resistance Flatness, R _{FLAT(ON)}	0.5	0.5	Ω typ	$V_S = 1.5 \text{ V to } 3.3 \text{ V, } I_S = -10 \text{ mA}$
		1.2	Ω max	
LEAKAGE CURRENTS				$V_{DD} = 5.5 \text{ V}$
Source Off Leakage Is (Off)	±0.01		nA typ	$V_S = 1 \text{ V}/4.5 \text{ V}, V_D = 4.5 \text{ V}/1 \text{ V}, \text{ see Figure 17}$
	±0.25	±1	nA max	
Drain Off Leakage I _D (Off)	±0.01		nA typ	$V_S = 1 \text{ V}/4.5 \text{ V}, V_D = 4.5 \text{ V}/1 \text{ V}, \text{ see Figure 17}$
	±0.25	±1	nA max	_
Channel On Leakage, ID, IS (On)	±0.01		nA typ	$V_S = V_D = 1 \text{ V}/4.5 \text{ V}$, see Figure 18
	±0.25	±1	nA max	_
DIGITAL INPUTS				
Input High Voltage, V _{INH}		2.4	V min	
Input Low Voltage, V _{INL}		0.8	V max	
Input Current, I _{INL} or I _{INH}	0.005		μA typ	$V_{IN} = V_{INL}$ or V_{INH}
		±0.1	μA max	
Digital Input Capacitance, C _{IN}	2		pF typ	
DYNAMIC CHARACTERISTICS ²				
ton	120		ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$; $V_S = 3.3 V$, see Figure 19
	210	260	ns max	
t _{OFF}	50		ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$; $V_S = 3.3 V$, see Figure 19
	75	100	ns max	
Break-Before-Make Time Delay, t _{BBM} (ADG623 Only)	70		ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$, $V_{S1} = V_{S2} = 3.3 V$
		10	ns min	See Figure 20
Charge Injection	6		pC typ	$V_S = 0 \text{ V}; R_S = 0 \Omega, C_L = 1 \text{ nF, see Figure 21}$
Off Isolation	-65		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$, see Figure 22
Channel-to-Channel Crosstalk	-90		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$, see Figure 23
Bandwidth –3 dB	230		MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$, see Figure 24
C _s (Off)	20		pF typ	f = 1 MHz
C _D (Off)	20		pF typ	f = 1 MHz
C_D , C_S (On)	70		pF typ	f = 1 MHz
POWER REQUIREMENTS				$V_{DD} = 5.5 \text{ V}$
I_{DD}	0.001		μA typ	Digital Inputs = 0 V or 5.5 V
		1.0	μA max	

 $^{^1}$ Temperature range is as follows: B Version, –40°C to +85°C. 2 Guaranteed by design; not subject to production test.

ABSOLUTE MAXIMUM RATINGS

 $T_A = 25$ °C, unless otherwise noted.

Table 3.

Rating
13 V
−0.3 V to +6.5 V
+0.3 V to -6.5 V
$V_{SS} - 0.3 \text{ V to } V_{DD} + 0.3 \text{ V}$
$-0.3 \text{ V to V}_{DD} + 0.3 \text{ V or } 30 \text{ mA},$ whichever occurs first
100 mA (pulsed at 1 ms, 10% duty cycle maximum)
50 mA
−40°C to +85°C
−65°C to +150°C
150°C
206°C/W
44°C/W
300°C
220°C
260(+0/-5)°C
20 sec to 40 sec

¹ Overvoltages at INx, S, or D must be clamped by internal diodes. Currents should be limited to the maximum ratings given.

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Only one absolute maximum rating may be applied at any one time.

Table 4. ADG621/ADG622 Truth Table

ADG621 INx	ADG622 INx	Switch Sx Condition		
0	1	Off		
1	0	On		

Table 5. ADG623 Truth Table

INx	Switch S1	Switch S2	
0	Off	On	
1	On	Off	

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

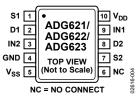


Figure 4. 10-Lead MSOP (RM-10)

Table 6. Pin Function Descriptions

Pin No.	Mnemonic	Description
1, 7	S1, S2	Source Terminal. May be an input or an output.
2, 8	D1, D2	Drain Terminal. May be an input or an output.
3, 9	IN2, IN1	Control Input.
4	GND	Ground (0 V) Reference.
5	V _{SS}	Most Negative Power Supply in a Dual-Supply Application. In single-supply applications, this should be tied to ground at the device.
6	NC	No Connect.
10	V_{DD}	Most Positive Power Supply Potential.

TERMINOLOGY

 I_{DD}

Positive supply current.

 I_{ss}

Negative supply current

 $V_D(V_s)$

Analog voltage on Terminal D and Terminal S.

RON

Ohmic resistance between Terminal D and Terminal S.

R_{FLAT (ON)}

On resistance flatness is defined as the difference between the maximum and minimum value of on resistance as measured over the specified analog signal range.

 ΔR_{ON}

On resistance match between any two channels.

Is (Off)

Source leakage current with the switch off.

ID (Off)

Drain leakage current with the switch off.

 $I_D, I_S(On)$

Channel leakage current with the switch on.

 \mathbf{V}_{INL}

Maximum input voltage for Logic 0.

VINE

Minimum input voltage for Logic 1.

 $I_{INL}(I_{INH})$

Input current of the digital input.

Cs (Off)

Off switch source capacitance. Measured with reference to ground.

C_D (Off)

Off switch drain capacitance. Measured with reference to ground.

C_D, C_S (On)

On switch capacitance. Measured with reference to ground.

 C_{IN}

Digital input capacitance.

ton

Delay time between the 50% and the 90% points of the digital input and switch on condition.

toff

Delay time between the 50% and the 90% points of the digital input and switch off condition.

 t_{BBM}

On or off time measured between the 90% points of both switches when switching from one address state to another.

Charge Injection

A measure of the glitch impulse transferred from the digital input to the analog output during on-off switching.

Off Isolation

A measure of an unwanted signal coupling through an off switch.

Crosstalk

A measure of an unwanted signal that is coupled through from one channel to another as a result of parasitic capacitance.

-3 dB Bandwidth

The frequency at which the output is attenuated by 3 dB.

On Response

The frequency response of the on switch.

Insertion Loss

The attenuation between the input and output ports of the switch when the switch is in the on condition and is due to the on resistance of the switch.

TYPICAL PERFORMANCE CHARACTERISTICS

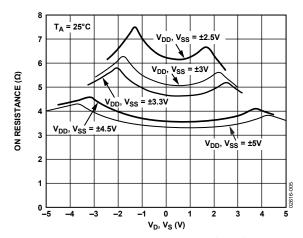


Figure 5. On Resistance vs. V_D , V_S (Dual Supply)

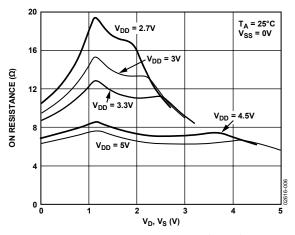


Figure 6. On Resistance vs. V_D , V_S (Single Supply)

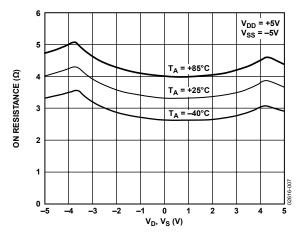


Figure 7. On Resistance vs. V_D , V_S for Different Temperatures (Dual Supply)

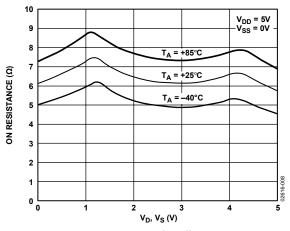


Figure 8. On Resistance vs. V_D , V_S for Different Temperature (Single Supply)

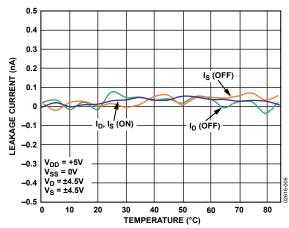


Figure 9. Leakage Current vs. Temperature (Dual Supply)

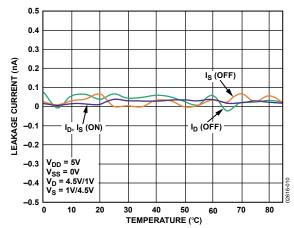


Figure 10. Leakage Current vs. Temperature (Single Supply)

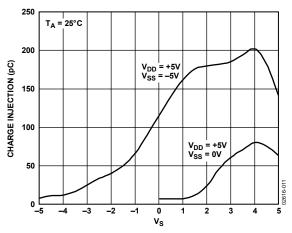


Figure 11. Charge Injection vs. Source Voltage

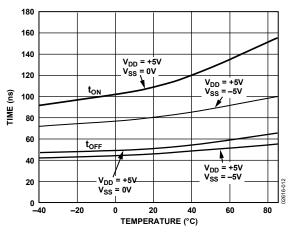


Figure 12. t_{ON}/t_{OFF} Times vs. Temperature

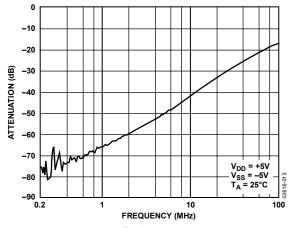


Figure 13. Off Isolation vs. Frequency

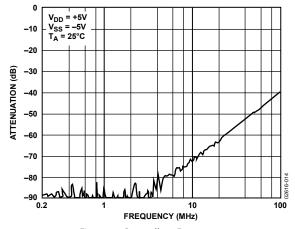
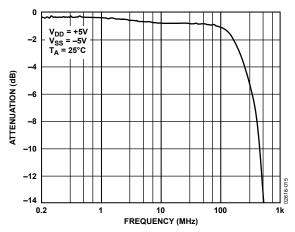
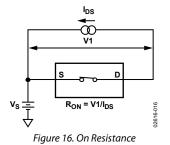
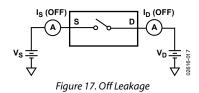
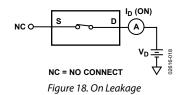
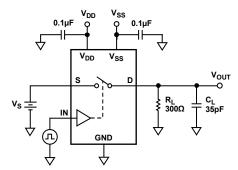


Figure 14. Crosstalk vs. Frequency


Figure 15. On Response vs. Frequency

TEST CIRCUITS

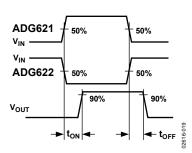
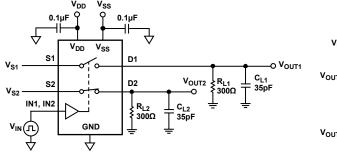



Figure 19. Switching Times (ton, toff)

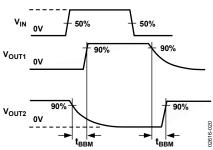


Figure 20. Break-Before-Make Time Delay, t_{BBM} (ADG623 Only)

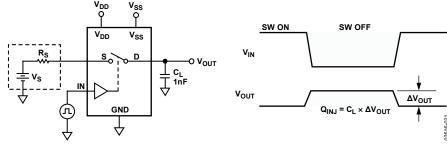


Figure 21. Charge Injection

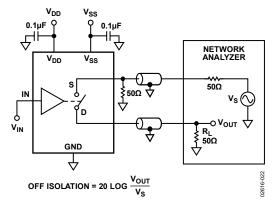


Figure 22. Off Isolation

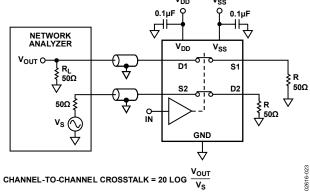


Figure 23. Channel-to-Channel Crosstalk

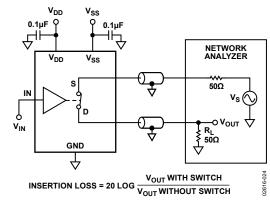
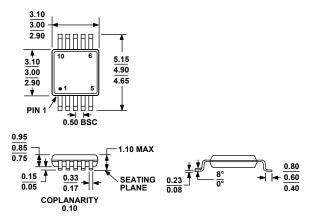



Figure 24. Bandwidth

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MO-187-BA

Figure 25. 10-Lead Mini Small Outline Package [MSOP] (RM-10) Dimensions shown in millimeters

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option	Branding
ADG621BRM	-40°C to +85°C	10-Lead Mini Small Outline Package [MSOP]	RM-10	SXB
ADG621BRM-REEL	-40°C to +85°C	10-Lead Mini Small Outline Package [MSOP]	RM-10	SXB
ADG621BRM-REEL7	-40°C to +85°C	10-Lead Mini Small Outline Package [MSOP]	RM-10	SXB
ADG621BRMZ ¹	-40°C to +85°C	10-Lead Mini Small Outline Package [MSOP]	RM-10	SXB#
ADG621BRMZ-REEL ¹	-40°C to +85°C	10-Lead Mini Small Outline Package [MSOP]	RM-10	SXB#
ADG622BRM	-40°C to +85°C	10-Lead Mini Small Outline Package [MSOP]	RM-10	SYB
ADG622BRM-REEL	-40°C to +85°C	10-Lead Mini Small Outline Package [MSOP]	RM-10	SYB
ADG622BRM-REEL7	-40°C to +85°C	10-Lead Mini Small Outline Package [MSOP]	RM-10	SYB
ADG622BRMZ ¹	-40°C to +85°C	10-Lead Mini Small Outline Package [MSOP]	RM-10	S12
ADG622BRMZ-REEL ¹	-40°C to +85°C	10-Lead Mini Small Outline Package [MSOP]	RM-10	S12
ADG622BRMZ-REEL7 ¹	-40°C to +85°C	10-Lead Mini Small Outline Package [MSOP]	RM-10	S12
ADG623BRM	-40°C to +85°C	10-Lead Mini Small Outline Package [MSOP]	RM-10	SZB
ADG623BRM-REEL	-40°C to +85°C	10-Lead Mini Small Outline Package [MSOP]	RM-10	SZB
ADG623BRM-REEL7	-40°C to +85°C	10-Lead Mini Small Outline Package [MSOP]	RM-10	SZB
ADG623BRMZ ¹	-40°C to +85°C	10-Lead Mini Small Outline Package [MSOP]	RM-10	S1F
ADG623BRMZ-REEL ¹	-40°C to +85°C	10-Lead Mini Small Outline Package [MSOP]	RM-10	S1F
ADG623BRMZ-REEL7 ¹	−40°C to +85°C	10-Lead Mini Small Outline Package [MSOP]	RM-10	S1F

 $^{^{1}}$ Z= RoHS Compliant Part, # denotes RoHS compliant product and may be top or bottom marked.

